

120 MINUTES

1.	The in A) B) C) D)	filtration capac Total amount Shape and siz Arrangement All the above	of voids e of soil	s in the I particle	soil es				
2.	Sinkho A)	oles are found i Sandstone	n region B)	ns under Limest	-	C)	Granite	D)	Shale
3.	The th A) B) C) D)	ree key metals Manganese, L Manganese, C Manganese, Z Lithium, Nick	Lithium Cobalt and Linc and	and Nic nd Zinc Lithiur	kel	ke Elec	tric Vehicle (E	V) batte	eries.
4.	A mindrilling		sed in th	ne manu	facture	of pain	ts, chemical in	dustry a	nd oil well
	A)	Barite	B)	Quartz	Z	C)	Feldspar	D)	Magnesite
5.	Longw A)	vall mining is e Copper ore		d in the Coal	extract	ion of : C)	Lignite	D)	Iron ore
6.	In a fu A) B) C) D)	lly saturated so air air and volum water solids and wa	e of wa		olume o	of voids	equal to the vo	olume o	f:
7.	Stubbl A) C)	e burning prod CO Oxides of Sul		gas	s/es. B) D)	CO ₂ All the	e above		
8.	Stream A) B) C) D)	in midstream along the streading the streading the streading the streading midstream	near the am bank am bed	stream ks					
9.	The co	ountry where th Spain	ere was B)	near co Italy	ontinuo	ıs volca C)	nic eruptions s Philippines	ince Ma D)	rch, 2021: Iceland
10.	Mullap A) C)	periyar dam is a Gravity Buttress	a	- dam.	B) D)	Arch None o	of these		

11.	Rings A)	woodite and W CaTiO ₃	adsleyit B)	e, found MgSi		upper n C)	mantle of the of Mg ₂ SiO ₄	earth, are D)	polymorphs of Fe ₂ SiO ₄	f:
12.	A) C)	- is a silicate m Monazite Hemimorph			B) D)	-	soberyl ocrocite			
13.	The eA)	exoskeleton of Chitinous m Siliceous ma	aterial	s were 1	nade of B) D)	Calc	areous materi	ial		
14.	The c A) C)	liameter of pet Between 4 a Between 64	nd 64mi	n	rth Scal B) D)	Betw	een 2 and 4 n een 0.5 and 2			
15.	Whic A) C)	h one among t Mica fish Mineral veir		wing is	not a sl B) D)		tion patterns			
16.		Exclusive Eco mum ofl 170		Zone (I 120	EEZ) e	xtends s	seaward from	n the bas	seline (coast) 1	to a
17.	The c	ppening throug Shaft	h which B)	miners Adit	enter a	n under	ground mine Tunnel	D)	Drift	
18.	The r depos	najor type of e sited: Fluviatile	nvironm B)	ent in v		ower G	ondwana Gro Marine	oup of roc D)	ks were Volcanic	
19.	The rA)	number of face	s in a Po B)	ositive R 24	Chombo	hedron: C)	4	D)	6	
20.	The s A) C)	tratigraphic eq Lower Baba Sargur Grou	abudan (-	per Vin B) D)	Bhim	in Southern l a Group r Kurnool Gr			
21.	The rA)	ninerals comm Pyroxene an Pyroxene an	d Olivin	e	nar rock B) D)	Olivi	ne and Amph kene and Biot			
22.	Whice A) B) C) D)	h one of the fo Meander is a Playas are as Erosion take Perennial riv	formed a ssociated es place a	at the your the with note that the co	outhful s neander oncave	stage of s part of a	`a river	lering riv	er?	
23.	A line	e on a map cor Isogon					values on th			

24.		- of a sensor sy each other	stem is	its capa	ability t	y to discriminate two closely spaced objects				
	A) C)	Texture Resolution			B) D)	Tone Magn	ification			
25.	The a A)	verage width o	f the co	ntinenta 40 km		C)	30 km	D)	20 km	
26.	Which A)	h among the fol 1:1000000	llowing B)	is a larg		e map? C)	1:50000	D)	1:10000	
27.	Mie s A) C)	cattering is cau Dust and fog Smoke and H			B) D)		olecules of these			
28.	Phobo A)	os and Deimos Saturn	are the B)	two nat Merci		ellites o C)	f: Mars	D)	Jupiter	
29.	Trans A)	pression fault is Strike-slip	s a type B)	of Dip-s		fault. C)	Oblique-slip	D)	Diagonal-slip	
30.	Which A) B) C) D)	Orbit at an al Makes one re Synchronous Coverage is l	titude o volutio with th	f 35786 n in 24 e Sun's	km hours rotatio	n	eostationary sate	ellites?		
31.	The ty	ypical secondar Bornite	y sulph B)	ide ore Chalc		oer C)	Tetrahedrite	D)	Covellite	
32.	a.	the following: Chenier ridge Arete Bolson. Natural levee)	1. 2. 3. 4.	Glaci Aeoli Fluvi Beacl	an al				
	A) C)	a-3, b-4, c-2, a-4, b-1, c-2,			B) D)		o-1, c-4, d-2 o-4, c-1, d-3			
33.	Panda A) C)	rettu deposit in Iron ore Crystalline lii			rict of k B) D)	Kerala co Musc Grapl	ovite			
34.	Schee A)	elite, ferberite a Platinum	nd hueb B)	onerite a Bismu		of: C)	Antimony	D)	Tungsten	
35.	Aquai A)	marine is a gen Topaz	variety B)	y of : Beryl		C)	Corundum	D)	Chrysoberyl	

36.		th one of the fo Kyanite	ollowing B)	is not a Dolon		efracto: C)	ry mineral? Magnesite	D)	Chromite				
	A)	Kyanne	D)	Dolon	inte	C)	Magnesite	D)	Chronine				
37.	Whic	ch one of the fo	llowing	is not a	passiv	e geoph	ysical method	of explo	oration?				
	A)	Self-potentia	al metho	d	B)	Grav	ity method						
	C)	Magneto-tel	luric me	thod	D)	Elect	rical Resistivity	y metho	d				
38.	Boun	na Sequence is	a charac	eteristic	sequen	ce of se	edimentary stru	ctures o	ecurring in:				
	A)	Pyroclasts			B)	Ophi	olites						
	C)	Glacio-fluvi	al depos	its	D)	Turb	idites						
39.				kind of b		_	e mineral make	s it:					
	A)	Homodesmi	c		B)		rodesmic						
	C)	Dibondic			D)	Poly	desmic						
40.	Ocim	um centraliafr	icanum			plant fo	r depo	osits.					
	A)	Zinc	B)	Manga	anese	C)	Copper	D)	Gold				
41.	Whic	h one among t											
	A)	2											
	B)	The surface	area of t	he earth	is 510	.1millio	on km²						
	C)	The average					2						
	D)	The average	density	of the ea	arth is	3.51gm	/cm³						
42.	"The degree and direction of the pitch of a fold are often indicated by those of the axe of the minor plications on its side"												
				s side"	D)	D	11 2 D 1						
	A)	Ramsay's R	ule		B)	-	pelly's Rule	D 1					
	C)	Rule of V's			D)	Dona	th and Parker I	Kule					
43.	Red Sea is an example of structure.												
	A)	Faulted			B)	Folde							
	C)	Erosional			D)	Resid	lual volcanic						
44.	Choo	se the correct	statemen	ıt :									
	A)	Vector meth	-				•						
	B)						d cheap overlay						
	C)						quality line drav	wing					
	D)	Accurate ge	ographic	location	n of da	ta is ma	intained						
45.	Point	of zero curvat	ture, whe	ere the se	ense of	curvatı	ure of a fold ch	anges fr	om a convex				
	to a c	concave line:											
	A)	Inflection Po	oint		B)	Crest	•						
	C)	Hinge			D)	Trou	ıgh						
46.	Surface Seismic waves that propagate on the earth's surface in a rolling motion similar												
		at of ocean way				_							
	A)	Rayleigh wa			B)		waves						
	C)	Secondary v	vaves		D)	Shear	r waves						

47.	Spinifex texture is characteristic of:											
	A)	Ophiolites			B)	Kom	atiites					
	C)	Carbonatite	S		D)	Phon	olites					
48.	A so	urce of magma	located	l within a	a plate	and awa	ay from plate	boundarie	es:			
	A)	Magma poo	1		B)	Lava	Pool					
	C)	Hotspot			D)	Magı	ma dome					
49.	Mato	the lithostrate	tigraphic	units w	ith thei	r Geolo	gic Age.					
	a.	Patcham Form	ation			1.						
	b.	Cumbum Forn	nation			2	2 Upper Cretaceous					
		Cuddalore san			n	3.	Jurassic					
	d.	Nimar sandsto	ne Form	nation		4.	Proterozoic					
	A)	a-4, b-1, c-3	3, d-2		B)	a-3, l	o-4, c-1, d-2					
	C)	a-1, b-4, c2,	d-3		D)	a-4, l	o-2, c-1, d-3					
50.		was a super	r contine	ent which	n existe	ed at abo	out 1.1 billior	n years ag	0.			
	A)	Gondwanala	and		B)	Pang	aea					
	C)	Rodinia			D)	Pantl	nalassa					
51.	An e	xceptionally ri	ch shoot	t or bunc	h of or	e is call	led:					
	A)	Lode	B)	Pitch		C)	Flat	D)	Bonanza			
52.	High	pressure envii	onment	results i	n:							
	A)											
	B)	Compact str	ructures									
	C)	, 1										
	D)	Dense struc	tures.									
53.	The	process of forn	nation o	f chromi	te:							
	A)	Magmatic d	ifferenti	iation	B)	Hydr	othermal cav	ity filling				
	C)	Residual Co	oncentra	tion	D)	Hydr	othermal rep	lacement				
54.	Frotl	n Floatation Pro	ocess is	used for	the sep	aration	of metal/s fr	omo	res			
	A)	Oxide	B)	Sulph	ide	C)	Silicate	D)	Sulphate			
55.	The	oxide ore mine	ral foun	d in the	beach s	ands of	f Kerala:					
	A)	Zircon	B)	Ilmen	ite	C)	Monazite	D)	Garnet			
56.	Platinum occurs only in											
	A) Acid rocks to intermediate rocks											
	B) Intermediate rocks.											
	C)	C) Basic rocks.										
	D)	Mafic to Ul	trabasic	rocks								

57.	Match the following: a. Stockworks. b. Saddle reefs. c. Ladder veins. d. Gash veins. 1. Mineralization along the crests of anticlines. 2. Transverse and nearly parallel fractures filled with ore. 3. Interlacing network of ore-bearing veinlets. 4. Small wedge-shaped fissures filled with the ores.													
	A) C)	a-2, b-1, c-3 a-3, b-1, c-2			B) D)		o-2, c-3, d-4 o-3, c-2, d-1							
58.	The 1	mineral which	shows	negative i	relief:									
	A)	Leucite	B)	Quart	Z	C)	Diamond	D)	Sillimanite					
59.	Choc A) B) C) D)	Siderite, Ma Calcite, Ma Calcite, Do	e the one with increasing order of specific gravity: Siderite, Magnesite, Dolomite, Calcite Calcite, Magnesite, Siderite, Dolomite Calcite, Dolomite, Magnesite, Siderite Calcite, Siderite, Magnesite, Dolomite method is suitable for drilling deep water wells in											
60.	DTH A) B) C) D)	Soft sedime Soft Sedime Hard igneo	nethod is suitable for drilling deep water wells in Soft sediments Soft Sedimentary rocks Hard igneous and metamorphic rocks Unconsolidated sediments											
61.	The 1 A) B) C) D)	Arunachal l Manipur, M	ttarakh Pradesh Ieghala	and, Hima n, Manipur ya, Mizor	ichal Pi , Jhark am, Na	adesh, hand, N galand,	Arunachal Pra Ieghalaya							
62.63.	A) B) C) D)	Inclusions a Intrusions a	atting vare olde are olde above a	eins the le er than the r than the n unconfo	rocks in rocks to rocks to rocks to remity a	n which hat hav re older Time d		nd d by intro onformity	ý					
	A) C)	Carbonifero Cretaceous	ous		B) D)	Devo Trias								
64.	Which A) B) C) D)	ch one of the for Bed-Systen Supergroup Period -Me Member-Zo	n-Form -Group mber-C	ation-Gro p-Formatic Group-Sup	up on-Bed ergrouj	-	units only?							

65.	In a st	tress ellipsoid					
	A)	the axes are proportional i	_	-	-	-	
	B)	the axes are proportional i vectors	n length	and per	pendicular to the	he princ	ipal stress
	C)	the axes are proportional i	n length	and par	allel / perpendi	icular to	the principal
		stress vectors					
	D)	the axes need not be propovectors	ortional ii	n length	or parallel to	the princ	cipal stress
66.	Conta	act aureole is commonly four	nd around	d metar	norphosed		
00.	A)	Ferruginous rocks	B)		areous rocks		
	C)	Argillaceous rocks	D)	Basa			
c -	****			0 :10			
67.		h one of the following is not					
	A)	Ammonites	B)		bites		
	C)	Nautiloids	D)	Grap	otolites		
68.	Gulch	heru Quartzite formation bel	ongs to -		Supergroup		
00.	A)		ldapah		Vindhyan	D)	Dharwar
	ŕ						
69.		centred Bravais lattice is see					
	A)	Cubic and Orthorhombic	B)		agonal and Ortl		DIC
	C)	Cubic and Tetragonal	D)	Cubi	c and hexagon	al	
70.	Whiel	h one of the following stater	ment is n e	of true :	about the Geole	ogy of K	erala?
70.	A)	Equivalents of Sargur sch				55y 01 I	cruiu:
	B)	All the charnockites of Ke					
	C)	Quilon formation is of Mi					
	D)	Basic dykes of Cretaceous		_		trict	
71.		h among the following is no	t correct	about I	nductively Cou	ipled Pla	isma Mass
		trometry (ICP-MS):	.f.a.a.l. a1		ot mans 102201		
		Can detect concentration of		iement a	at ppm level		
	B)	Can detect all elements at			Canala alamant		
	C) D)	Cannot measure the individues simple spectra	duai isot	opes or	each element		
	D)	Oses simple spectra					
72.	Long	-term changes in the geoche	mical cy	cle:			
	A)	Periodic changes	B)	Pere	nnial changes		
	C)	Constant changes	D)	Secu	lar changes.		
73.	If the	e content of fluoride is >	/litro	امنيا	ring vyatar it l		v offeets the teeth
13.		ones in human beings.	/IIIIE I	III QI IIIK	ing water, it i	iaimium	y affects the teeth
	A)	1.5 mg B) 0.5	mø	C)	1.0 gm	D)	1.25 mg
	11)	1.5 mg <i>B</i>) 0.5	mg	C)	1.0 gm	D)	1.23 mg

74.	Which one of the following statements is not true about water table?											
	A)	Water table of	changes	when discharg	e is not	t balanced by re	charge					
	B)	Water table i pumped	s depre	ssed near wells	from v	vhich large amo	ount of v	water is				
	C)		does no	t follow topogra	aphy							
	D)			the ground sur		lakes						
75.		e Moh's Scale o					ls.					
	A)	4	B)	5	C)	3	D)	6				
76.	Turb	idites are comm	only as									
	A)	Lacustrine	B)	Aeolian	C)	Deep Marine	e D)	Fluvial				
77.	In which of the following system does maximum number of solids crystallize?											
	A)	Monoclinic		B)		orhombic						
	C)	Isometric		D)	Tetra	agonal						
78.		does not find a	place i	n the list of Sal	ic mine	erals in C I P W	norm.					
	A)	Corundum	B)	Microcline	C)	Nepheline	D)	Leucite				
79.		nic, antimony, t	elluriur	n, selenium and	l mercu	ıry are consider	ed as pa	athfinder				
	A)	Chromium	B)	Copper	C)	Gold	D)	Platinum				
80.	Whic	ch among the fo	llowing	g does not belon	g to th	e amphibole gro	oup?					
	A)	Glaucophane	e B)	Grunerite	C)	Glauconite	D)	Gedrite				
81.	Choo	se the mineral	with fo	ur sets of cleav	ages							
	A)	Sphalerite	B)	Fluorite	C)	Calcite	D)	Orthoclase				
82.		sequence in whi	ich the			-	is calle	d:				
	A)	Paragenesis		B)	Reac	tion Series						
	C)	Facies		D)	Zoni	ng						
83.		most abundant i										
	A)	Nitrogen	B)	Magnesium	C)	Oxygen	D)	Hydrogen				
84.	Fissi	on Track dating	metho		bea	_						
	A)	Uranium	B)	Thorium	C)	Potassium	D)	Rubidium				
85.		ette, Kersantite,	Vogesi	-			of:					
	A)	Carbonatite		B)	-	prophyre						
	C)	Anorthosite		D)	Gabl	oro						
86.		type of basalts v		• •		•						
	A) Normal Mid Ocean Ridge Basalts (N-MORB)											
	B) Orogenic basalts											
	C)											
	D)	None of thes	e									

87.	An in A)	trusive for Laccolit		to the bed Cone		lane or C)	foliation of fo Lopolith	olded cou D)	intry rock Phacolit	h
88.	How A)	many prin	cipal sectio B)	ns are the	ere for a	a uniaxi C)	al crystal?	D)	1	
89.	magn	nas:				-	ition to simp		ıydrous bas	altic
	A) C)	-	ne-Albite-A Orthoclase-A				side-Anorthit side-Forsterit			
90.		_		g is not t		_	Field Streng		ents?	
	A) C)		gh charge large ionic r	radius	B) D)	-	ypically incor Zr, Hf, Nb are	-	es	
91.	Asser	tion (A):	Minerals crisotropic	rystallizii	ng in th	e isome	etric system a	re optica	lly	
	Reaso	on (R).:	-	s of uniax	cial and	biaxial	minerals are	anisotro	pic	
	A)	Both A	and R are tr	ue and R	explair	ns A				
	B)	Both A	and R are tr	ue but R	does no	ot expla	in A			
	C)	A is true	e but R is fa	lse						
	D)	A is fals	se but R is to	rue						
92.		•	peneficiation	n)	-		s made use o			
	A) C)	Gravity Magnet	ic property		B) D)		rical conduction ce tension	lvity		
93.		` /			-		y rocks in Inc			
			-				of petroleun	1		
	A)		and R are tr		-		in A			
	B) C)		and R are tree but R is fa		does no	ot expia	III A			
	D)		se but R is to							
	,									
94.			_				leyveli from			n
							lon formation	1 of Kera	la	
	A)		and R are tr		-					
	B)		and R are tr		does no	ot expia	ın A			
	C)		e but R is fa se but R is to							
	D)	A is lais	se dut K is ti	lue						
95.			Garnets typ	-			-			
				_			l in igneous r	ocks		
	A)		and R are tr				in A			
	B)		and R are tr		does no	ot expla	ın A			
	C)		e but R is fa se but R is to							
	1/1		ACTION IN IN IN	LILL						

96.	Find t	he mismatch							
	A)	Glaucophane		_	Inosil	icate			
	B)	Cancrinite		-	Sorosi	licate			
	C)	Beryl		-	-	silicate			
	D)	Peridot		-	Nesos	ilicate			
97.	Fossil	s of older age o	ccurring	g in roc	ks of yo	unger	age are called -	·:	
	A)	Guide fossils			B)		fossils		
	C)	Leaked fossils	S		D)	Rewo	rked fossils		
98.	Match	n the following:							
70.	a.	Dacite Dacite		1.	Ultrai	nafic v	olcanic rock		
	b.	Lherzolite		2.			volcanic rock		
	c.	Monzonite.		3.			lutonic rock		
	d.	Komatiite		4.			plutonic rock		
	A)	a-3, b-4, c-2,	d-1		B)	a-2, b	-3, c-4, d-1		
	C)	a-3, b-1, c-2,			D)		-3, c-1, d-2		
99.		he mismatch:							
	A)	Quartz	_		ine law				
	B)	Orthoclase	_	Pericli					
	C)	Pyrite	_	Spinel					
	D)	Aragonite	_	Cyclic	al twin				
100.		everage pH of th				<i>a</i>)	6.2	D)	5.5
	A)	7.0	B)	8.2		C)	6.3	D)	5.7
101.		the following:		_	D. 1				
	a.	Halite		1.	Pleoch		1		
	b.	Tourmaline.		2.		hroic h	aloes		
	C.	Staurolite.		3.	Uniax				
	d.	Biotite		4.	Isotro	pic			
	A)	a-4, b-1, c-2,	d-3		B)	a-1, b	-2, c-4, d-3		
	C)	a-3, b-1, c-2,	d-4		D)	a-4, b	-3, c-1, d-2		
102.	Whiel	n one of the foll	owing	silica no	lymorn	hs has	the hiohest der	nsity?	
102.	A)	α Quartz	B)	Stisho		C)	β Quartz	D)	Tridymite
103.		ovite belongs to		-					
	A)	Feldspathoid	B)	Garnet	t	C)	Amphibole	D)	Mica

104.	Reason (R).: Dunites are medium to fine grained Reason (R).: Dunites are formed from anhydrous magmas											
	A) B) C)	Both A and R are tr Both A and R are tr A is true but R is fa	ue but R lse	-								
	D)	A is false but R is to	rue									
105.	Char	i Formation, Patcham	Formatic	n and l	Katrol Formation beloi	ng toPeriod	1					
	A)	Cambrian B)	Creta	ceous	C) Jurassic	D) Triassi	ic					
106.		es of igneous rocks are	divided	into Al	kalic, Alkali-Calcic, C	alc-Alkalic and	Calcic					
	A)	Niggli		B)	Peacock							
	C)	Larsen		D)	Nockold-Allen							
	-,			-,	- 10 00000							
107.		is not helpful in deterr	_	e top a	nd bottom of beds							
	A)	Lenticular cross bed	_									
	B)	,										
	C)	Wedge-shaped cross bedding										
	D)	Tabular cross beddi	ng									
108.	Mate	th the following:										
	a.	Zone	1.	Chro	onostratigraphic unit							
	b.	Member	2.		ogic Time unit							
	c.	System.	3.		ratigraphic unit							
	d.	Epoch	4.	Litho	ostratigraphic unit							
	A)	a-3, b-4, c-1, d-2		B)	a-1, b-2, c-4, d-3							
	C)	a-3, b-1, c-2, d-4		D)	a-4, b-3, c-1, d-2							
	C)	a 5, 6 1, 6 2 , a 1		D)	u 1, 0 3, c 1, u 2							
109.			int shelly		on the ocean bottom d	uring the Paleoz	oic Era.					
	A)	Brachiopods		B)	Lamellibranches							
	C)	Gastropods		D)	Cephalopods							
110.	Choc	ose the attitude of a fol	iation pla	ane wh	ich is not possible:							
	A)	$078^{0}/42^{0} \text{ SE}$	r	B)	$328^{0}/62^{0}$ NW							
	C)	$310^{0}/40^{0} \text{ NE}$		D)	$158^{0}/60^{0} \text{ SW}$							
111.	Mata	h the fellowing:										
111.		th the following: Uranium		1	Vector Guieret							
	a. h			1. 2.	Vastan, Gujarat	Dradash						
	b.	Lignite Pituminous Coal			Singrauli, Madhya l		triot					
	C.	Bituminous Coal		3.	SurasaniYanam, Ea		li iCl					
	d.	Petroleum		4.	Jaduguda, Jharkhan	u						
	A)	a-1, b-4, c-3, d-2		B)	a-3, b-4, c-1, d-2							
	C)	a-4, b-1, c-3, d-2		D)	a-4, b-1, c-2, d-3							

112.	Exogyra, Arca, Ostrea, Trigonia and Venus belong to the Class:										
	A)	Gastropoda			B)	Cepha	ılopoda				
	C)	Pelecypoda			D)	Brach	iopoda				
113.	i A) B) C) D)	n the Siwalik C Boulder Cong Pinjor format Dhok Pathan Tatrot format	lomera ion formati	te forma		ils.					
114.	d	oes not belong	to the	Spinel G	roup.						
	A)	Magnetite	B)	Chrom	-	C)	Haematite	D)	Franklinite		
115.	-	rocess in which the rock by abra		picks up	sedim	ent, wh	nich acts like sa	andpape	r and wears		
	A)	Hydraulic act	ion		B)	Corra	sion				
	C)	Corrosion			D)	Attriti	ion				
116.	The pr	cocess / process	ses resp	onsible t	he form	nation o	of both outliers	s and inl	iers		
	A) 1	Erosion	1		B)	Faulti					
	C)	Folding			D)		e above				
117.	and old	d stages) and the ct-development	nese sec	quential c eplain"-	hange Who s	s are di	rected towards?	a well-			
	A)	Penck	B)	Gilbert		C)	Davis	D)	Gilbert		
118.	Which	among the fol		is not a j	period	of mass	s extinction in	the eartl	h's history?		
	A)	600 million y			B)		illion years				
	C)	250 million y	ears		D)	210 m	nillion years				
119.		oundary betweed				edium	grade" metamo	orphism	of Winkler		
	A)	Greenschist			B)	Amph	ibolite				
	C)	Granulite			D)	Blues	chist				
120.		irine + quartz, + aluminous o	rthopyr	oxene as	sembla	ages are	typical of	meta	amorphism.		
	A)	Granulite faci	es		B)		High Tempera	ture			
	C)	High Grade			D)	Mediu	ım Grade				